Multi-sensory Data Integration for Extracting Geotechnical Parameters for Landslides Hazard Assessment

نویسندگان

  • Abdulla Al-Rawabdeh
  • Ayman Habib
  • Fangning He
چکیده

Geotechnical engineering is a relatively new discipline that has developed rapidly over the past 30 years. It deals with a wide spectrum of natural geological materials ranging from low strength soils to high strength rocks. Earth movements are common in many parts of the world and, as a result, present serious safety and mortality risk to humans in addition to affecting construction activities. Earth movement can be classified into different categories with landslides as being one of those categories. In order to assess the stability of landslides, different geo-technical parameters are required such as the strike and dip of the discontinuity planes in the potential area. Areas affected by landslides are often inaccessible which makes manual compass and inclinometer measurements challenging because of the danger involved in this operation. Preventing large natural landslides is difficult; however some mitigation is possible and can help to minimize the hazards. Nowadays, 3D modeling of objects can be achieved through either passive or active remote sensing systems. Active sensors, such as Terrestrial Laser Scanning systems (TLS) have been used extensively for quick acquisition of highly accurate three-dimensional point cloud data with high resolution. However, the TLS in some cases has limitations during the data collection due to occlusions, orientation bias and truncation. This research addresses those issues by investigating the possibility of augmenting TLS in the occluded regions through close-range photogrammetry to generate high resolution and dense point cloud using the Semi-Global Matching (SGM) algorithm. By augmenting the two data acquisition methods and registering to a common coordinate system to provide a complete point cloud for the area of interest, any limitations and exposed gaps in the data are filled. Planar segmentation is then carried out to extract the required geotechnical parameters automatically. Four sets of geotechnical parameters have been compared in this research: 1) a set of manual measurements, 2) a set extracted from the TLS data only, 3) a set extracted from the SGM algorithm only, 4) and finally a set extracted from the fused TLS and SGM data. The results showed that the data fusion method provided more accurate results when compared to the results coming from the TLS data and those coming from SGM only. This reveals that the impact of the occluded regions on the calculations of the geotechnical parameters must be considered to achieve the required quality of the estimation process. The proposed method of this research provided high quality measurements for the geotechnical parameters required to assess the landslide hazard, ensured safety, and saved cost and time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes

Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the conditi...

متن کامل

Recent 2017-2018 Seismicity and News Seismic Hazard Zoning of Iran

On November 12, 2017, at 18:18 UTC, a major earthquake with moment magnitude Mw7.3 struck the Kermanshah province of Iran, causing extended damage and casualties. Thus, we explore seismicity preceding this earthquake, with the aim to understand whether the information from past events could provide some insights about the occurrence of this and other future large earthquakes. Taking into accou...

متن کامل

Deep Excavation Hazard Assessment Zoning in District 1 in Shiraz Municipality Using Geographic Information System (GIS)

This research presents the geotechnical zoning map of district 1 in Shiraz municipality with focus on municipal deep excavation hazard assessment on data from 160 boreholes. For this purpose, the mechanical properties are determined according to the results of direct shear, uniaxial, and SPT tests and then excavation hazard assessment with depths of 3, 6 and 9 m, in situations where the excavat...

متن کامل

Modelling Shallow Landslides within the context of a Distributed Framework for Multi-Risk Assessment of Forest Fire Hazards

The MEDIGRID project aims to use distributed GRID technology to integrate natural hazard models, maintained independently at different centres in Europe, into a single system, accessible to users over the internet. As an example, the SHETRAN hydrology, soil erosion and landslide model can receive input from a separate fire propagation model and in turn can provide data to a vegetation regenerat...

متن کامل

Characterisation of weathered clayey soils responsible for shallow landslides

Shallow earth translational slides and earth flows, affecting colluvial soils derived by the weathering of the clayey bedrock, are a recurrent problem causing damage to buildings and roads in many areas of Apennines. The susceptibility assessment, e.g. slope stability models, requires the preliminary characterization of these superficial covers (lithology, geotechnical and hydraulic parameters)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014